Publications

2022, Gordon, I.E., L.S. Rothman, et al., The HITRAN2020 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949, https://doi.org/10.1016/j.jqsrt.2021.107949
Tags: Database, FTIR

2022, Mariaccia, A., Keckhut P., Hauchecorne A., Claud C., Le Pichon A., Meftah M., Khaykin S., Assessment of ERA-5 Temperature Variability in the MiddleAtmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020, Atmosphere, 13 (2), 242, http://doi.org/10.3390/atmos13020242
Tags: Lidar, Model, Temperature

2022, Lei, L., Berkoff, T. A., Gronoff, G., Su, J., Nehrir, A. R., Wu, Y., ... & Kuang, S, Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system, Atmospheric Measurement Techniques, 5(8), 2465-2478
Tags: Aerosol, Lidar, Ozone, UVB

2022, Tencé, F. , Jumelet, J., Bekki, S., Khaykin, S., Sarkissian, A., & Keckhut, P., Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville, Journal of Geophysical Research: Atmospheres, 127, e2021JD035349, https://doi. org/10.1029/2021JD035349
Tags: Aerosol, Fire, Lidar, Sonde

2022, Chang, K., Cooper O., Gaudel A., Allaart M., Ancellet G., Clark H., Godin-Beekmann S., Leblanc T., van Malderen R., Nédélec P., Petropavlovskikh I. et al., Impact of the COVID‐19 Economic Downturn on Tropospheric Ozone Trends: An Uncertainty Weighted Data Synthesis for Quantifying Regional Anomalies Above Western North America and Europe, AGU Advances, 3 (2), pp.e2021AV000542, https://dx.doi.org/10.1029/2021av000542
Tags: COVID, Lidar, Ozone, Trends

2021, Wing, R., S. Godin-Beekmann, W. Steinbrecht, T.J. Mcgee, J.T. Sullivan, S. Khaykin, G. Sumnicht, and L. Twigg, Evaluation of the new DWD ozone and temperature lidar during the Hohenpeißenberg Ozone Profiling Study (HOPS) and comparison of results with previous NDACC campaigns, Atmospheric Measurement Techniques, 14(5), 3773-3794, https://doi.org/10.5194/amt-14-3773-2021
Tags: Lidar, Ozone, Temperature, Validation

2021, Marlton, G., et al., Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmospheric Chemistry and Physics, 21(8), 6079–6092, https://doi.org/10.5194/acp-21-6079-2021
Tags: Lidar, Model, Temperature

2021, Madonna, F., Summa, D.; Girolamo, P.D.; Marra, F.; Wang, Y.; Rosoldi, M., Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated using Radiosounding Observations over Europe, Atmosphere, 12, 301, https://doi.org/10.3390/atmos12030301
Tags: Lidar, Sonde, Trends

2021, Tritscher, I., Michael C. Pitts, Lamont R. Poole, Simon P. Alexander, Francesco Cairo, Martyn P. Chipperfield, Jens-Uwe Gross, Michael Hoepfner, Alyn Lambert, Beiping Luo, Sergey Molleker, Andrew Orr, Ross Salawitch, Marcel Snels, Reinhold Spang, Wolfgang Woiwode, Thomas Peter, Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion, Reviews of Geophysics, 59, https://doi.org/10.1029/2020RG000702
Tags: Lidar, PSC, Ozone

2021, Khodayar, S., Davolio, S., Di Girolamo, P., Lebeaupin Brossier, C., Flaounas, E., Fourrie, N., Lee, K.-O., Ricard, D., Vie, B., Bouttier, F., Caldas-Alvarez, A., and Ducrocq, V, Overview towards improved understanding of the mechanisms leading to heavy precipitation in the Western Mediterranean: lessons learned from HyMeX, Atmospheric Chemistry and Physics, 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021
Tags: H2O, Lidar