Publications

2022, Steinbrecht, W. , Leblanc, T, Lidars in the Network for Detection of Atmospheric Composition Change (NDACC) and the Tropospheric Ozone Lidar Network (TOLNet), Handbook of Air Quality and Climate Change, pp. 1-24, Ed. Springer Nature, https://doi.org/10.1007/978-981-15-2527-8_55-1
Tags: Lidar, Ozone

2022, Ancellet, G., Godin-Beekmann S., Smit H., Stauffer R., van Malderen R., Bodichon R., Pazmino A., Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations, Atmospheric Measurement Techniques, 15 (10), pp.3105-3120, https://doi.org/10.5194/amt-15-3105-2022
Tags: Lidar, Ozone, Satellite, Sonde

2022, Kotsakis, A., John T. Sullivan, Thomas F. Hanisco, Robert J. Swap, Vanessa Caicedo, Timothy A. Berkoff, Guillaume Gronoff et al., Sensitivity of total column NO2 at a marine site within the Chesapeake Bay during OWLETS-2, Atmospheric Environment, 277, 119063
Tags: Lidar, NO2

2022, Chouza, F., Leblanc, T., Brewer, M., Wang, P., Martucci, G., Haefele, A., Vérèmes, H., Duflot, V., Payen, G., and Keckhut, P., The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method, Atmospheric Measurement Techniques, 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022
Tags: Aerosol, H2O, Lidar

2022, Hannigan, J.W., I. Ortega, S. B. Shams, T. Blumenstock, J. E. Campbell, S. Conway, V. Flood, O. García, D. Griffith, M. Grutter, F. Hase, P. Jeseck, N. Jones, E. Mahieu, M. Makarova, M. De Mazière, I. Morino, I. Murata, T. Nagahama, H. Nakijima, J. Notholt, M. Palm, A. Poberovskii, M. Rettinger, J. Robinson, A. N. Röhling, M. Schneider, C. Servais, D. Smale, W. Stremme, K. Strong, R. Sussmann, Y. Té, C. Vigouroux, and T. Wizenberg, Global Atmospheric OCS Trend Analysis from 22 NDACC Stations, Journal of Geophysical Research: Atmospheres, 127(4), https://doi.org/10.1029/2021JD035764
Tags: FTIR, OCS, Trends

2022, Summa, D., F. Madonna, N. Franco, B. De Rosa, and P. Di Girolamo , Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1, Atmospheric Measurement Techniques, 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022
Tags: Lidar, Model

2022, Le Du, T., Keckhut P., Hauchecorne A., Simoneau P., Observation of Gravity Wave Vertical Propagation through a Mesospheric Inversion Layer, Atmosphere, 13 (7), pp.1003, https://doi.org/10.3390/atmos13071003
Tags: Lidar, Temperature

2022, Tencé, F. , Jumelet, J., Bekki, S., Khaykin, S., Sarkissian, A., & Keckhut, P., Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville, Journal of Geophysical Research: Atmospheres, 127, e2021JD035349, https://doi. org/10.1029/2021JD035349
Tags: Aerosol, Fire, Lidar, Sonde

2021, Khodayar, S., Davolio, S., Di Girolamo, P., Lebeaupin Brossier, C., Flaounas, E., Fourrie, N., Lee, K.-O., Ricard, D., Vie, B., Bouttier, F., Caldas-Alvarez, A., and Ducrocq, V, Overview towards improved understanding of the mechanisms leading to heavy precipitation in the Western Mediterranean: lessons learned from HyMeX, Atmospheric Chemistry and Physics, 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021
Tags: H2O, Lidar

2021, Pini, F., Piras, G., Astiaso Garcia, D., and Di Girolamo, P., Impact of the different vehicle fleets on PM10 pollution: Comparison between the ten most populous Italian metropolitan cities for the year 2018, Science of the Total Environment, 773, 145524, https://doi.org/10.1016/j.scitotenv.2021.145524
Tags: Aerosol, Lidar