Publications

2021, Keckhut, P., Hauchecorne A., Meftah M., Khaykin S., Claud C., Simoneau P., Middle-Atmosphere Temperature Monitoring Addressed with a Constellation of CubeSats dedicated to Climate issues, Journal of Atmospheric and Oceanic Technology, 38(3), 685–693, https://doi.org/10.1175/JTECH-D-20-0046.1
Tags: Lidar, Satellite, Temperature

2021, Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bo Marais, E. A., Roberts, J. F., Ryan, R. G., Eskes, H., Boersma, K. F., Choi, S., Joiner, J., Abuhassan, N., Redondas, A., Grutter, M., Cede, A., Gomez, L., and Navarro-Comas, M, New observations of NO2 in the upper troposphere from TROPOMI, Atmospheric Measurement Techniques, 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021
Tags: UVVis, Satellite, NO2

2021, Marais, E., J.F. Roberts, R.G. Ryan, H. Eskes, K.F. Boersma, S. Choi, J. Joiner, et al., New Observations of upper tropospheric NO2 from TROPOMI, Atmospheric Measurement Techniques, 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021
Tags: NO2, Satellite

2021, Brunamonti, S., Martucci, G., Romanens, G., Poltera, Y., Wienhold, F. G., Hervo, M., Haefele, A., and Navas-Guzmán, F., Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements, Atmospheric Chemistry and Physics, 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021
Tags: Lidar, Sonde, Temperature

2021, Klanner, L., K. Höveler, D. Khordakova, M. Perfahl, C. Rolf, T. Trickl, H. Vogelmann, A powerful lidar system capable of one-hour measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere, Atmospheric Measurement Techniques, 14, 531–555, https://doi.org/10.5194/amt-14-531-2021
Tags: Lidar, Temperature, H2O

2021, Marlton, G., et al., Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmospheric Chemistry and Physics, 21(8), 6079–6092, https://doi.org/10.5194/acp-21-6079-2021
Tags: Lidar, Model, Temperature

2021, Yu, P., Sean M. Davis, Owen B. Toon, Robert W. Portmann, Charles G. Bardeen, John E. Barnes, Hagen Telg, Christopher Maloney and Karen H. Rosenlof, Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke, Geophysical Research Letters, 48, 7, https://doi.org/10.1029/2021GL092609
Tags: Lidar, Fire, Temperature

2021, Martucci, G., Navas-Guzmán, F., Renaud, L., Romanens, G., Gamage, S. M., Hervo, M., Jeannet, P., and Haefele, A., Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne, Atmospheric Measurement Techniques, 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021
Tags: Lidar, Temperature

2021, Gruzdev, A.N., Elokhov A.S. , Changes in the column content and vertical distribution of NO2 according to the results of 30-year measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Izvestiya, Atmospheric and Oceanic Physics, 57 (1), 91–103, https://doi.org/10.31857/S0002351521010089
Tags: UVVis, NO2

2020, Wing, R., Steinbrecht W., Godin-Beekmann S., McGee T. J., Sullivan J. T., Sumnicht G., Ancellet G., Hauchecorne A., Khaykin S., Keckhut P., Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE), Atmospheric Measurement Techniques, 13 (10), 5621-5642, https://doi.org/10.5194/amt-13-5621-2020
Tags: Lidar, Ozone, Satellite, Temperature, Validation