Publications

2022, Strahan, S.E., D. Smale, S. Solomon, G. Taha, M. R. Damon, S. D. Steenrod, N. Jones, B. Liley, R. Querel and J. Robinson, Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires, Geophysical Research Letters, 49(14): e2022GL098290
Tags: Cl, Fire, Model

2022, Lutsch, E., D. Wunch, D. B. A. Jones, C. Clerbaux, J. W. Hannigan, T.-L. He, I. Ortega, S. Roche, K. Strong, and H. M. Worden, Can the data assimilation of CO from MOPITT or IASI constrain high-latitude wildfire emissions? A Case Study of the 2017 Canadian Wildfires, Earth and Space Science, p. 44, https://doi.org/10.1002/essoar.10510875.1
Tags: CO, Fire, Model, Satellite

2022, Herrera, B., A. Bezanilla, T. Blumenstock, E. Dammers, F. Hase, L. Clarisse, A. Magaldi, C. Rivera, W. Stremme, K. Strong, C. Viatte, M. Van Damme, and M. Grutter, Measurement report: Evolution and distribution of NH3 over Mexico City from ground-based and satellite infrared spectroscopic measurements, Atmospheric Chemistry and Physics, 22, 14119–14132, https://doi.org/10.5194/acp-22-14119- 2022
Tags: FTIR, NH3, Satellite

2022, Wang, W. , Liu, C., Clarisse, L., Van Damme., M., Coheur, P.-F., Xie, Y., Shan, C., Hu, Q., Sun, Y., and Jones, N., Ground-based measurements of atmospheric NH3 by Fourier transform infrared spectrometry at Hefei and comparisons with IASI data, Science of the Total Environment, 287, 119256, https://doi.org/10.1016/j.atmosenv.2022.119256
Tags: FTIR, NH3, Satellite

2021, Wizenberg, T., K. Strong, K. Walker, E. Lutsch, T. Borsdorff, and J. Landgraf, Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer, Atmospheric Measurement Techniques, 14, 7707-7728, https://doi.org/10.5194/amt-14-7707-2021
Tags: CO, FTIR, Satellite

2021, Stanevich, I., D.B.A. Jones, K. Strong, M. Keller, D.K. Henze, R.J. Parker, H. Boesch, D. Wunch, J. Notholt, C. Petri, T. Warneke, R. Sussmann, M. Schneider, F. Hase, R. Kivi, N.M. Deutscher, V.A. Velazco, K.A. Walker, and F. Deng, Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH4 data with weak-constraint four-dimensional variational data assimilation, Atmospheric Chemistry and Physics, 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021
Tags: FTIR, Satellite, CH4, XCH4

2021, Prignon, M., Chabrillat, S., Friedrich, M., Smale, D., Strahan, S. E., Bernath, P. F., Chipperfield, M. P., Dhomse, S. S., Feng, W., Minganti, D., Servais, C. and Mahieu, E., Stratospheric fluorine as a tracer of circulation changes: comparison between infrared remote‐sensing observations and simulations with five modern reanalyses, Journal of Geophysical Research: Atmospheres, 126(19), https://doi.org/10.1029/2021JD034995
Tags: F, FTIR, Model

2021, Sun, Y., Yin, H., Liu, C., Zhang, L., Cheng, Y., Palm, M., Notholt, J., Lu, X., Vigouroux, C., Zheng, B., Wang, W., Jones, N., Shan, C., Qin, M., Tian, Y., Hu, Q., Meng, F., and Liu, J., Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation, Atmospheric Chemistry and Physics, 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021
Tags: Model, FTIR, HCHO

2021, Marais, E., J.F. Roberts, R.G. Ryan, H. Eskes, K.F. Boersma, S. Choi, J. Joiner, et al., New Observations of upper tropospheric NO2 from TROPOMI, Atmospheric Measurement Techniques, 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021
Tags: NO2, Satellite

2021, Zhang, Y., et al., Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations, Atmospheric Chemistry and Physics, 21, https://doi.org/10.5194/acp-21-3643-2021
Tags: CH4, FTIR, Satellite