Publications

2021, Marlton, G., et al., Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmospheric Chemistry and Physics, 21(8), 6079–6092, https://doi.org/10.5194/acp-21-6079-2021
Tags: Lidar, Model, Temperature

2021, Wang, B., Kuang, S., Pfister, G. G., Pour-Biazar, A., Buchholz, R. R., Langford, A. O., & Newchurch, M. J. , Impact of the 2016 Southeastern US Wildfires on the Vertical Distribution of Ozone and Aerosol at Huntsville, Alabama, Journal of Geophysical Research: Atmospheres, 126(9), e2021JD034796, https://doi.org/10.1029/2021JD034796
Tags: Lidar, Fire, Ozone, Aerosol

2021, Yu, P., Sean M. Davis, Owen B. Toon, Robert W. Portmann, Charles G. Bardeen, John E. Barnes, Hagen Telg, Christopher Maloney and Karen H. Rosenlof, Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke, Geophysical Research Letters, 48, 7, https://doi.org/10.1029/2021GL092609
Tags: Lidar, Fire, Temperature

2021, Madonna, F., Summa, D.; Girolamo, P.D.; Marra, F.; Wang, Y.; Rosoldi, M., Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated using Radiosounding Observations over Europe, Atmosphere, 12, 301, https://doi.org/10.3390/atmos12030301
Tags: Lidar, Sonde, Trends

2021, Martucci, G., Navas-Guzmán, F., Renaud, L., Romanens, G., Gamage, S. M., Hervo, M., Jeannet, P., and Haefele, A., Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne, Atmospheric Measurement Techniques, 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021
Tags: Lidar, Temperature

2020, Trickl, T., H. Giehl, F. Neidl, M. Perfahl, H. Vogelmann, Three decades of tropospheric ozone lidar development at Garmisch-Partenkirchen, Germany, Atmospheric Measurement Techniques, 13, 6357–6390, https://doi.org/10.5194/amt-13-6357-2020
Tags: Lidar, Ozone, Timeseries

2020, Di Girolamo, P., B. De Rosa, C. Flamant, D. Summa, O. Bousquet, P. Chazette, J. Totems, M. Cacciani, Water vapour mixing ratio and temperature inter-comparison results in framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1, Bulletin of Atmospheric Science and Technology, 1, 113–153, https://doi.org/10.1007/s42865-020-00008-3
Tags: H2O, Lidar, Temperature

2020, Steiner, A.K., et al., Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018, Journal of Climate, 33(19), 8165–8194, https://doi.org/10.1175/JCLI-D-19-0998.1
Tags: Lidar, Temperature

2020, Khaykin, S., Hauchecorne A., Wing R., Keckhut P., Godin-Beekmann S., Porteneuve J., Mariscal J.-F., Schmitt J., Doppler lidar at Observatoire de Haute Provence for wind profiling up to 75 km altitude: performance evaluation and observations, Atmospheric Measurement Techniques, 13 (3), 1501-1516, https://doi.org/10.5194/amt-13-1501-2020
Tags: Lidar, Wind

2020, Knepp, T.N., Thomason, L., Roell, M., Damadeo, R., Leavor, K., Leblanc, T., Chouza, F., Khaykin, S., Godin-Beekmann, S., and Flittner, D., Evaluation of a method for converting Stratospheric Aerosol and Gas Experiment (SAGE) extinction coefficients to backscatter coefficients for intercomparison with lidar observations, Atmospheric Measurement Techniques, 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020
Tags: Aerosol, Lidar