Publications

2022, Di Paolantonio, M., Dionisi, D., and Liberti, G. L., A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars, Atmospheric Measurement Techniques, 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022
Tags: Lidar

2022, Tencé, F. , Jumelet, J., Bekki, S., Khaykin, S., Sarkissian, A., & Keckhut, P., Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville, Journal of Geophysical Research: Atmospheres, 127, e2021JD035349, https://doi. org/10.1029/2021JD035349
Tags: Aerosol, Fire, Lidar, Sonde

2022, Khaykin, S.A., A. Podglajen, F. Ploeger, J. Grooß, F. Tence, S. Bekki, K. Khlopenkov, K. Bedka, L. Rieger, A. Baron, S. Beekmann, B. Legras, P. Sellitto, T. Sakai, J. Barnes, O. Uchino, I. Morino, T. Nagai, R. Wing, G. Baumgarten, M. Gerding, V. Duflot, G. Payen, J. Jumelet, R. Querel, B., A. Bourassa, B. Clouser, A. Feofilov, A. Hauchecorne, and F. Ravetta , Global perturbation of stratospheric water and aerosol burden by Hunga eruption, Communications Earth Environment, 3, 316, https://doi.org/10.1038/s43247-022-00652-x
Tags: Aerosol, H2O, Lidar, Volcano

2022, Mariaccia, A., Keckhut P., Hauchecorne A., Claud C., Le Pichon A., Meftah M., Khaykin S., Assessment of ERA-5 Temperature Variability in the MiddleAtmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020, Atmosphere, 13 (2), 242, http://doi.org/10.3390/atmos13020242
Tags: Lidar, Model, Temperature

2022, Sullivan, J., Apituley, A., Mettig, N., Kreher, K., Knowland, K.E., Allaart, M., Piters, A., Van Roozendael, M.,Veefkind, P.. Ziemke, J.R. Kramarova, N., Weber, M., Rozanov, A., Twigg, L., Sumnicht, G., McGee, T.J., Tropospheric and Stratospheric Ozone Profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19), Atmospheric Chemistry and Physics, 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022
Tags: Lidar, Satellite, Sonde, UVVis

2002, Antuña, J.C., A. Robock, G. L. Stenchikov, L. W. Thomason, and J. E. Barnes, Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption, Journal of Geophysical Research, 107(D14), 4194
Tags: Aerosol, Lidar, Satellite, Volcano

2002, Brinksma, E.J., J. Ajtic, J. B. Bergwerff, G. E. Bodeker, I. S. Boyd, J. F. de Haan, W. Hogervorst, J.W. Hovenier, and D. P. J. Swart, Five years of observations of ozone profiles over Lauder, New Zealand, Journal of Geophysical Research, 107, (D14), https://doi.org/10.1029/2001JD000737
Tags: Lidar, Ozone

2002, Burris, J., T. McGee, W. Hoegy, L. Lait, L. Twigg, G. Sumnicht, W. Heaps, C. Hostetler, T. P. Bui, R. Neuber and I. S. McDermid, Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE, Journal of Geophysical Research, 107, 8286-8296
Tags: Aerosol, Lidar, Temperature, Validation

2002, di Sarra, A., M. Cacciani, G. Fiocco, D. Fuà, and T. S. Jørgensen, Lidar observations of polar stratospheric clouds over Northern Greenland in the period 1990-1997, Journal of Geophysical Research, 107 (D12), https://doi.org/10.1029/2001JD001074
Tags: Aerosol, Lidar, PSC

2002, Fueglistaler, S., Luo, B.P., Buss, S., Wernli, H., Voigt C., Müller, M., Neuber, R., Hostetler, C.A., Poole, L.R., Flentje, H., Fahey, D.W., Northway, M.J., Peter, Th., Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations, Geophysical Research Letters, 29, https://doi.org/10.1029/2001GL014548
Tags: Aerosol, Clouds, Lidar