Publications

2020, Reuter, M., M. Buchwitz, O. Schneising, S. Noël, H. Bovensmann, J.P. Burrows, H. Boesch, A. Di Noia, J. Anand, R.J. Parker, P. Somkuti, L. Wu, O.P. Hasekamp, I. Aben, A. Kuze, H. Suto, K. Shiomi, Y. Yoshida, I. Morino, D. Crisp, C. O'Dell, J. Notholt, C. Petri, T. Warneke, V. Velazco, N.M. Deutscher, D.W.T. Griffith, R. Kivi, D. Pollard, F. Hase, R. Sussmann, Y.V. Té,K. Strong, S. Roche, M.K. Sha, M. De Mazière, D.G. Feist, L.T. Iraki, C. Roehl, C. Retscher, and D. Schepers, Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications, Atmospheric Measurement Techniques, 13, 789-819, https://doi.org/10.5194/amt-13-789-2020
Tags: CH4, CO2, FTIR, Satellite

2019, Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D., Modelling CO2 weather – why horizontal resolution matters, Atmospheric Chemistry and Physics, 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019
Tags: CO2, FTIR, Model

2019, Snels, M., Scoccione, A., Di Liberto, L., Colao, F., Pitts, M., Poole, L., Deshler, T., Cairo, F., Cagnazzo, C., and Fierli, F., Comparison of Antarctic polar stratospheric cloud observations by ground-based and space-borne lidar and relevance for chemistry–climate models, Atmospheric Chemistry and Physics, 19, 955–972, https://doi.org/10.5194/acp-19-955-2019
Tags: Lidar, Model, PSC

2018, Vigouroux, C., Aquino, C. A. B., Bauwens, M., Becker, C., Blumenstock, T., Mazi`ere, M. D., Garc ́ıa, O., Grutter, M., Guarin, C., Hannigan, J., Hase, F., Jones, N., Kivi, R., Koshelev, D., Langerock, B., Lutsch, E., Makarova, M., Metzger, J.-M., Mu ̈ller, J.-F., Notholt, J., Ortega, I., Palm, M., Paton-Walsh, C., Poberovskii, A., Rettinger, M., Robinson, J., Smale, D., Stavrakou, T., Stremme, W., Strong, K., Sussmann, R., T ́e, Y., and Toon, G., NDACC harmonized formaldehyde time- series from 21 FTIR stations covering a wide range of column abundances, Atmospheric Measurement Techniques, 11(9):5049–5073
Tags: FTIR, H2CO

2018, O'Dell, C.W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A., Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmospheric Measurement Techniques, 11, 6539-6576, https://doi.org/10.5194/amt-11-6539-2018
Tags: Algorithm, CO2, FTIR

2017, Baylon, J.L., Stremme, W., Grutter, M., Hase, F., and Blumenstock, T, Background CO2 levels and error analysis from ground-based solar absorption IR measurements in central Mexico, Atmospheric Measurement Techniques, 10, 2425-2434, https://doi.org/10.5194/amt-10-2425-2017
Tags: CO2, FTIR, Validation

2016, Wang, Y., et al., Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2, Atmospheric Chemistry and Physics, 16(4), 2123-2138, https://doi.org/10.5194/acp-16-2123-2016
Tags: CO2, FTIR, OCS

2015, Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M., Vigouroux, C., Hendrick, F., George, M., Clerbaux, C., Coheur, P.-F., and Guenther, A., How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?, Atmospheric Chemistry and Physics, 15, 11861-11884, https://doi.org/10.5194/acp-15-11861-2015
Tags: FTIR, H2CO, Satellite

2015, Franco, B., Hendrick, F., Van Roozendael, M., Müller, J.-F., Stavrakou, T., Marais, E. A., Bovy, B., Bader, W., Fayt, C., Hermans, C., Lejeune, B., Pinardi, G., Servais, C., and Mahieu, E., Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations, Atmospheric Measurement Techniques, 8, 1733-1756, https://doi.org/10.5194/amt-8-1733-2015
Tags: H2CO, Model, UVVis

2015, DeSmedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C., Gielen, C., Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., and Van Roozendael, M., Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations, Atmospheric Chemistry and Physics, 15, 12519-12545, https://doi.org/10.5194/acp-15-12519-2015
Tags: Diurnal, FTIR, H2CO, Satellite, Seasonal