Publications

2022, Di Paolantonio, M., Dionisi, D., and Liberti, G. L., A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars, Atmospheric Measurement Techniques, 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022
Tags: Lidar

2022, Tencé, F. , Jumelet, J., Bekki, S., Khaykin, S., Sarkissian, A., & Keckhut, P., Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville, Journal of Geophysical Research: Atmospheres, 127, e2021JD035349, https://doi. org/10.1029/2021JD035349
Tags: Aerosol, Fire, Lidar, Sonde

2022, Khaykin, S.A., A. Podglajen, F. Ploeger, J. Grooß, F. Tence, S. Bekki, K. Khlopenkov, K. Bedka, L. Rieger, A. Baron, S. Beekmann, B. Legras, P. Sellitto, T. Sakai, J. Barnes, O. Uchino, I. Morino, T. Nagai, R. Wing, G. Baumgarten, M. Gerding, V. Duflot, G. Payen, J. Jumelet, R. Querel, B., A. Bourassa, B. Clouser, A. Feofilov, A. Hauchecorne, and F. Ravetta , Global perturbation of stratospheric water and aerosol burden by Hunga eruption, Communications Earth Environment, 3, 316, https://doi.org/10.1038/s43247-022-00652-x
Tags: Aerosol, H2O, Lidar, Volcano

2022, Mariaccia, A., Keckhut P., Hauchecorne A., Claud C., Le Pichon A., Meftah M., Khaykin S., Assessment of ERA-5 Temperature Variability in the MiddleAtmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020, Atmosphere, 13 (2), 242, http://doi.org/10.3390/atmos13020242
Tags: Lidar, Model, Temperature

2022, Sullivan, J., Apituley, A., Mettig, N., Kreher, K., Knowland, K.E., Allaart, M., Piters, A., Van Roozendael, M.,Veefkind, P.. Ziemke, J.R. Kramarova, N., Weber, M., Rozanov, A., Twigg, L., Sumnicht, G., McGee, T.J., Tropospheric and Stratospheric Ozone Profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19), Atmospheric Chemistry and Physics, 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022
Tags: Lidar, Satellite, Sonde, UVVis

2015, di Liberto, L., R Lehmann, I Tritscher, F Fierli, JL Mercer, M Snels, Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study, Atmospheric Chemistry and Physics, 15 (12), 6651-6665, https://doi.org/10.5194/acp-15-6651-201
Tags: Aerosol, Lidar

2015, Dionisi, D., et al., Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo LIdar Calibration Campaign, Atmospheric Measurement Techniques, 8,1425-1445
Tags: CalVal, H2O, Lidar

2015, Gaudel, A., G. Ancellet, S. Godin-Beekmann, Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44°N, 6.7°E, Atmospheric Environment, 113, 2015, 78-89, https://doi.org/10.1016/j.atmosenv.2015.04.028
Tags: Lidar, Ozone, Sonde

2015, Khaykin, S., Hauchecorne A., Mze N., Keckhut P, Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations, Geophysical Research Letters, 42 (4), 1251-1258, https://doi.org/10.1002/2014GL062891
Tags: Lidar, Temperature

2015, le Pichon, A., Assink J. D., Heinrich P., Blanc E., Charlton-Perez A. J., Lee C.-F., Keckhut P., Hauchecorne A., Refenacht R., Kampfer N., Drob D., P.S.M. Smets, L. G. Evers, L. Ceranna, C. Pilger, O. Ross, C. Claud, J., Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models, Journal of Geophysical Research: Atmospheres, 120 (16), 8318-8331, https://doi.org/10.1002/2015JD023273
Tags: Lidar, Model, Temperature, Wind