Publications

2022, Di Paolantonio, M., Dionisi, D., and Liberti, G. L., A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars, Atmospheric Measurement Techniques, 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022
Tags: Lidar

2022, Tencé, F. , Jumelet, J., Bekki, S., Khaykin, S., Sarkissian, A., & Keckhut, P., Australian Black Summer Smoke Observed by Lidar at the French Antarctic Station Dumont d’Urville, Journal of Geophysical Research: Atmospheres, 127, e2021JD035349, https://doi. org/10.1029/2021JD035349
Tags: Aerosol, Fire, Lidar, Sonde

2022, Khaykin, S.A., A. Podglajen, F. Ploeger, J. Grooß, F. Tence, S. Bekki, K. Khlopenkov, K. Bedka, L. Rieger, A. Baron, S. Beekmann, B. Legras, P. Sellitto, T. Sakai, J. Barnes, O. Uchino, I. Morino, T. Nagai, R. Wing, G. Baumgarten, M. Gerding, V. Duflot, G. Payen, J. Jumelet, R. Querel, B., A. Bourassa, B. Clouser, A. Feofilov, A. Hauchecorne, and F. Ravetta , Global perturbation of stratospheric water and aerosol burden by Hunga eruption, Communications Earth Environment, 3, 316, https://doi.org/10.1038/s43247-022-00652-x
Tags: Aerosol, H2O, Lidar, Volcano

2022, Mariaccia, A., Keckhut P., Hauchecorne A., Claud C., Le Pichon A., Meftah M., Khaykin S., Assessment of ERA-5 Temperature Variability in the MiddleAtmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020, Atmosphere, 13 (2), 242, http://doi.org/10.3390/atmos13020242
Tags: Lidar, Model, Temperature

2022, Sullivan, J., Apituley, A., Mettig, N., Kreher, K., Knowland, K.E., Allaart, M., Piters, A., Van Roozendael, M.,Veefkind, P.. Ziemke, J.R. Kramarova, N., Weber, M., Rozanov, A., Twigg, L., Sumnicht, G., McGee, T.J., Tropospheric and Stratospheric Ozone Profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19), Atmospheric Chemistry and Physics, 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022
Tags: Lidar, Satellite, Sonde, UVVis

1998, Ancellet, G., F. Ravetta, A compact airborne lidar for tropospheric ozone (alto): description and field measurements, Applied Optics, 37, 5509 – 5521
Tags: Lidar, Ozone

1998, Baray, J.L., G. Ancellet, F.G. Taupin, M. Bessafi, S. Baldy and P. Keckhut, Subtropical tropopause break as a possible stratosphere source of ozone in the tropical troposphere, Journal of Atmospheric and Solar-Terrestrial Physics, 60, 27-36
Tags: Lidar, Ozone

1998, Bergeret, V., S. Bekki, S. Godin and G. Mégie, Analyse des variations saisonnières de l'ozone antarctique dans la basse stratosphère à partir des données lidar et sonde de Dumont d'Urville, , C.R. Acad. Sci. Sér. II a, 326, 751-756
Tags: Lidar, Ozone, Sonde, Validation

1998, Brinksma, E.J., Y.J. Meijer, B.J. Connor, G.L. Manney, J.B. Bergwerff, G.E. Bodeker, I.S. Boyd, J.B. Liley, W. Hogervorst, J.W. Hovenier, N.J. Livesey, D.P.J Swart, Analysis of record-low ozone values during the 1997 winter over Lauder, New Zealand, Geophysical Research Letters, 25, 2785-2788
Tags: Lidar, Ozone

1998, Brinksma, E.J., Y. J. Meijer, I. S. McDermid, R. P. Cageao, J. B. Bergwerff, D. P. J. Swart, W. Ubachs, W. A. Matthews, W. Hogervorst and J. W. Hovenier, First lidar observations of mesospheric hydroxyl, Geophysical Research Letters, 25, 51-54
Tags: Hydroxyl, Lidar